0
RESEARCH PAPERS: Mechanisms Papers

Dynamic Response of Pressurized Thin Cylindrical Shells Subjected to Torsional Loads

[+] Author and Article Information
P. G. Kessel, N. K. Liao

Department of Engineering Mechanics, University of Wisconsin, Madison, Wisc.

J. Eng. Ind 95(3), 797-802 (Aug 01, 1973) (6 pages) doi:10.1115/1.3438228 History: Received June 06, 1972; Online July 15, 2010

Abstract

This paper presents a theoretical analysis of the transient and steady-state response of a thin cylindrical shell of finite length, simply supported at both ends, under a uniform initial biaxial stress and subjected to either a circumferentially tangential harmonic point force of a sinusoidally distributed harmonic line load acting in the circumferential direction. The analyses are based on both Flugge’s and Donnell’s theories. Numerical results of the steady-state response are presented for both theories to illustrate the effects of various relevant parameters on the dynamic deflection, and to provide a direct comparison between Donnell’s and Flugge’s theories for dynamic loadings. This paper establishes the range of shell geometry for which Donnell’s equations give satisfactory results in predicting the steady-state response. The dynamic behavior after the first resonant frequency and the effect of initial stress on the dynamic response are also pointed out.

Copyright © 1973 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In