Experimental and Numerical Investigation on the Influence of Process Speed on the Blanking Process

[+] Author and Article Information
A. M. Goijaerts, L. E. Govaert, F. P. T. Baaijens

Materials Technology, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

J. Manuf. Sci. Eng 124(2), 416-419 (Apr 29, 2002) (4 pages) doi:10.1115/1.1445152 History: Received March 01, 2000; Revised May 01, 2001; Online April 29, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Goijaerts,  A. M., Govaert,  L. E., and Baaijens,  F. P. T., 2000, “Prediction of Ductile Fracture in Metal Blanking,” ASME J. Manuf. Sci. Eng., 122, pp. 476–483.
Tilsley,  R., and Howard,  F., 1958, “Recent Investigations into the Blanking and Piercing of Sheet Materials,” Machinery, 93, pp. 151–158.
Johnson, W., and Slater, R. A. C., 1967, “A Survey of the Slow and Fast Blanking of Metals at Ambient and High Temperatures,” Proceedings of the International Conference of Manufacturing Technology pp. 773–851, Michigan.
Leonov,  A. I., 1976, “Non-equilibrium Thermodynamics and Rheology of Viscoelastic Polymer Media,” Rheol. Acta, 15, pp. 85–98.
Baaijens,  F. P. T., 1991, “Calculation of Residual Stresses in Injection Molded Products,” Rheol. Acta, 30, pp. 284–299.
Tervoort,  T. A., Smit,  R. J. M., Brekelmans,  W. A. M., and Govaert,  L. E., 1998, “A Constitutive Equation for the Elasto-Viscoplastic Deformation of Glassy Polymers,” Mech. Time-Depend. Mater., 1, pp. 269–291.
Bodner,  S. R., and Partom,  Y., 1975, “Constitutive Equations for Elasto-Viscoplastic Strain-Hardening Materials,” ASME J. Appl. Mech., 42, pp. 385–389.
Rubin,  M. B., 1987, “An Elasto-Viscoplastic Model Exhibiting Continuity of Solid and Fluid States,” Int. J. Eng. Sci., 25, pp. 1175–1191.
MARC Manuals: Volume A to F, 1997, Version K7, Palo Alto, California, U.S.A.
Van der Aa,  M. A. H., Schreurs,  P. J. G., and Baaijens,  F. P. T., 2001, “Modelling of the Wall Ironing Process of Polymer Coated Sheet Metal,” Mech. Mater., 33, pp. 555–572.
Rubin,  M. B., 1989, “A Time Integration Procedure for Plastic Deformation in Elasto-Viscoplastic Metals,” Journal of Applied Mathematics and Physics, 40, pp. 846–871.
Stegeman,  Y. W., Goijaerts,  A. M., Brokken,  D., Brekelmans,  W. A. M., Govaert,  L. E., and Baaijens,  F. P. T., 1999, “An Experimental and Numerical Study of a Planar Blanking Process,” J. Mater. Process. Technol., 87, pp. 266–276.
Kolkailah,  F. A., and McPhate,  A. J., 1990, “Bodner-Partom Constitutive Model and Non-Linear Finite Element Analysis,” J. Eng. Mater. Technol., 112, pp. 287–291.
van der Aa, M. A. H., 1999, “Wall Ironing of Polymer Coated Sheet Metal,” Ph.D. thesis, Eindhoven University of Technology, The Netherlands.
Goijaerts, A. M., 1999, “Prediction of Ductile Fracture in Metal Blanking,” Ph.D. thesis, Eindhoven University of Technology, The Netherlands. http://wfwweb.wfw.wtb.tue.nl/mate/pdfs/54.pdf
Brokken,  D., Brekelmans,  W. A. M., and Baaijens,  F. P. T., 1998, “Numerical Modelling of the Metal Blanking Process,” J. Mater. Process. Technol. 83, pp. 192–199.
Brokken, D., 1999, “Numerical Modelling of Ductile Fracture in Blanking,” Ph.D. thesis, Eindhoven University of Technology, The Netherlands.
Schreurs,  P. J. G., Veldpaus,  F. E., and Brekelmans,  W. A. M., 1986, “Simulation of Forming Processes Using the Arbitrary Eulerian-Lagrangian Formulation,” Comput. Methods Appl. Mech. Eng., 58, pp. 19–36.
Baaijens,  F. P. T., 1993, “An U-ALE Formulation of 3-D Unsteady Viscoelastic Flow,” Int. J. Numer. Methods Eng., 36, pp. 1115–1143.
Brokken, D., Goijaerts, A. M., Brekelmans, W. A. M., Oomens, C. W. J., and Baaijens, F. P. T., 1997, “Modelling of the Blanking Process,” D. R. J. Owen, E. Oñate, and E. Hinton, Computational Plasticity, Fundamentals and Applications, Vol. 2, pp. 1417–1424. CIMNE, Barcelona.
Goijaerts,  A. M., Stegeman,  Y. W., Govaert,  L. E., Brokken,  D., Brekelmans,  W. A. M., and Baaijens,  F. P. T., 2000, “Can a New and Experimental and Numerical Study Improve Metal Blanking?” J. Mater. Process. Technol., 103, pp. 44–50.
Rice,  J. R., and Tracey,  D. M., 1969, “On the Ductile Enlargement of Voids in Triaxial Stress Fields,” J. Mech. Phys. Solids, 17, pp. 201–217.
Oyane,  M., Sato,  T., Okimoto,  K., and Shima,  S., 1980, “Criteria for Ductile Fracture and Their Applications,” J. Mech. Work. Technol. 4, pp. 65–81.


Grahic Jump Location
Performance of constitutive model with the Bodner-Partom viscosity function using Z(ε̄p) according to Eq. (7). The markers represent the experimentally found stress-strain relations out of the tensile tests for different strain rates. The bold solid line represents the stress-strain relation of Eq. (6).
Grahic Jump Location
A typical mesh produced by the adaptive automatic remeshing algorithm
Grahic Jump Location
Comparison of experimental maximum blanking forces with numerical predictions using the compressible Leonov model with Bodner-Partom viscosity over a large range of punching velocities.
Grahic Jump Location
Comparison for experimental punch displacements at fracture and numerical predictions using the criteria of Table 2 as a function of blanking velocities. The error bars represent twice the standard-deviations for the experiments (95 percent interval).



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In