RESEARCH PAPERS: Other Technical Papers

An Evaluation of the Mechanical Properties of Mn-Mo and Mn-Mo-Ni Steels

[+] Author and Article Information
R. A. Swift, J. A. Gulya

Alloy Department, Research Division, Lukens Steel Company, Coatesville, Pa.

J. Eng. Ind 95(1), 235-242 (Feb 01, 1973) (8 pages) doi:10.1115/1.3438111 History: Received June 13, 1972; Online July 15, 2010


A study of the effects of normalizing and austenitizing on the mechanical properties of Mn-Mo and Mn-Mo-Ni steels is presented. It is shown that the quenched and tempered condition has superior notch toughness, elevated temperature tensile properties, and creep ductility than the normalized and tempered condition. The basis of comparison used for strength is the percentage of the room temperature strength. The creep strength and rupture resistance of the normalized and tempered condition are better than those of the quenched and tempered condition. Also, a comparison of the properties of the steels is made to evaluate the effects of a 0.5 percent Ni addition. While it improves hardenability, Ni tends to impair the elevated temperature creep strength and rupture resistance. Significant effects of Ni are seen on the elevated temperature tensile properties. The loss in ultimate tensile strength with increasing temperature is greater for the Ni modified grade than for the unmodified Mn-Mo. In the quenched and tempered condition, both yield strength and ultimate tensile strength are less affected by temperature when no Ni is added.

Copyright © 1973 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In