0
RESEARCH PAPERS

An Experimental Investigation of Lubrication in Hydrostatic Extrusion Using Wax as a Model Material

[+] Author and Article Information
A. Wuerscher

Wire and Cable Division, Northern Electric Co., Ltd., Lachine, P. Q., Canada

W. B. Rice

Queen’s University, Kingston, Ontario, Canada

J. Eng. Ind 94(3), 913-919 (Aug 01, 1972) (7 pages) doi:10.1115/1.3428270 History: Received May 28, 1971; Online July 15, 2010

Abstract

This paper describes hydrostatic extrusion experiments in which paraffin wax was extruded, undertaken to test the validity of a theory proposed by Iyengar and Rice concerning the conditions necessary for hydrodynamic lubrication. Three fluids were used: castor oil, and two silicone fluids. Stress-strain curves obtained at several strain rates revealed that the particular wax behaves like many metals in that Y = Aεm . Strain-rates in the die are assessed, and corresponding values of Y are incorporated in the Hoffman and Sachs analysis of extrusion, which is then used to estimate the coefficient of friction from observed values of extrusion pressure. Analogy with journal bearing friction phenomena leads to the conclusion that at higher speeds hydrodynamic lubrication was attained with all three fluids, but that it was “thin-film” rather than “thick-film” predicted for similar billet speeds. Violent pressure fluctuations observed at higher speeds with castor oil, but not with the silicone fluids are attributed to smaller compressibility and viscosity of the castor oil.

Copyright © 1972 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In