0
TECHNICAL PAPERS

3D FEA Modeling of Hard Turning

[+] Author and Article Information
Y. B. Guo, C. R. Liu

School of Industrial Engineering, Purdue University, West Lafayette, IN 47907

J. Manuf. Sci. Eng 124(2), 189-199 (Apr 29, 2002) (11 pages) doi:10.1115/1.1430678 History: Received June 01, 2000; Revised July 01, 2001; Online April 29, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.

References

Matsumoto,  Y., Barash,  M. M., and Liu,  C. R., 1986, “Effects of Hardness on the Surface Integrity of AISI 4340 Steel,” ASME J. Eng. Ind., 108, pp. 169–175.
Koenig,  W., Berktold,  A., and Koch,  K. F., 1993, “Turning Versus Grinding-A Comparison of Surface Integrity Aspects and Attainable Accuracy,” CIRP Ann., 42/1, pp. 39–43.
Toenshoff, H. K., Wobker, H. G., and Brandt, D., 1995, “Hard Turning—Influences on the Workpiece Properties,” Trans. of NAMRI/SME, Vol. XXIII, pp. 215–220.
Liu,  C. R., and Mittal,  S., 1996, “Single-Step Superfinish Hard Machining: Feasibility and Feasible Cutting Conditions,” Rob. Comput.-Integr. Manufact., 12, No. 1, pp. 15–27.
Ng,  E. G., Aspinwall,  D. K., Brazil,  D., and Monaghan,  J., 1999, “Modeling of Temperature and Forces When Orthogonally Machining Hardened Steel,” Int. J. Mach. Tools Manuf., 39, pp. 885–903.
van Luttervelt,  C. A., Childs,  T. H. C., Jawahir,  I. S., Klocke,  F., and Venuvinod,  P. K., 1998, “Present Situation and Future Trends in Modeling of Machining Operations—Progress Report of the CIRP Working Group ‘Modeling of Machining Operations,’” CIRP Ann., 47/2, pp. 587–626.
Elbestawi,  M. A., Srivastava,  A. K., and El-Wardany,  T. I., 1996, “A Model for Chip Formation During Machining of Hardened Steel,” CIRP Ann., 45/1, pp. 71–76.
Nakayama,  K., Arai,  M., and Kanda,  T., 1988, “Machining Characteristics of Hard Materials,” CIRP Ann., 37/1, pp. 89–92.
Chou, Y. K., and Evans, C., 1997, “Finish Hard Turning of Powder Metallurgy M50 Steel,” Trans. of NAMRI/SME, Vol. XXV, pp. 81–86.
Wu,  D. M., and Matsumoto,  Y., 1990, “The Effect of Hardness on Residual Stresses in Orthogonal Machining of AISI 4340 Steel,” ASME J. Eng. Ind., 112, pp. 245–252.
da Marcio,  B. S., and Wallbank,  J., 1999, “Cutting Temperature: Prediction and Measurement Methods—a Review,” J. Mater. Process. Technol., 88, pp. 195–202.
Wang,  J. Y., and Liu,  C. R., 1998, “A New Concept for Decoupling the Cutting Forces due to Tool Flank Wear and Chip Formation in Hard Turning,” Mach. Sci. Technol., 2(1), pp. 77–90.
Abrao,  A. M., and Aspinwall,  D. K., 1997, “Temperature Evaluation of Cutting Tools During Machining of Hardened Bearing Steel Using Polycrystalline Cubic Boron Nitride and Ceramic Cutting Tools,” J. Mater. Sci. Technol., 13, May, pp. 445–450.
Ueda,  T., Huda,  M. A., Yamada,  K., and Nakayama,  K., 1999, “Temperature Measurement of CBN Tool in Turning of High Hardness Steel,” CIRP Ann., 48/1, pp. 63–66.
Strenkowski,  J. S., and Carroll,  J. T., 1985, “A Finite Element Model of Orthogonal Metal Cutting,” ASME J. Eng. Ind., 107, pp. 349–354.
Lin,  Z. C., Lin,  Y. Y., and Liu,  C. R., 1991, “Effects of Thermal Load and Mechanical Load on the Residual Stress in a Machined Surface,” Int. J. Mech. Sci., 33, No. 4, pp. 263–278.
Shih,  A. J., 1995, “Finite Element Simulation of Orthogonal Metal Cutting,” ASME J. Eng. Ind., 117, pp. 84–93.
Obikawa,  T., Sasahara,  H., Shirakashi,  T., and Usui,  E., 1997, “Application of Computational Machining Method to Discontinuous Chip Formation,” ASME J. Manuf. Sci. Eng., 119, pp. 667–674.
Sasahara, H., Obikawa, T., and Shirakashi, T., 1997, “Finite Element Modeling of Residual Stress Control on Machined Surface,” Transactions of NAMRI/SME, Vol. XXV, pp. 231–218.
Guo, Y. B., and Liu, C. R., 2000, “Residual Stress Formation Mechanism and its Control by Sequential Cuts,” Trans. of NAMRI/SME, Vol. XXVIII, pp. 179–184.
Guo,  Y. B., and Dornfeld,  D. A., 2000, “Finite Element Modeling of Drilling Burr Formation Process,” ASME J. Manuf. Sci. Eng., 122, pp. 612–619.
Oxley, P. L. B., 1989, The Mechanics of Machining, Ellis Horwood Limited, Chichester, England, UK.
Stevenson,  R., 1997, “Study on the Correlation of Workpiece Mechanical Properties from Compression and Cutting Tests,” Mach. Sci. Technol., 1(1), pp. 67–79.
Shatla, M., and Altan, T., 2000, “Determination of Flow Stress for Machining and Practical Applications of FEM and Analytical Modeling,” Proc. Of the 2000 NSF Design & Manufacturing Res. Conf., http://www.engr.washington.edu/∼uwepp/nsf/.
Guo, Y. B., and Liu, C. R., 1999, “Mechanical Properties of Hardened AISI 52100 Steel in Hard Machining Processes,” ASME J. Manuf. Sci. Eng., in press.
Usui, E., and Shirakashi, T., 1982, “Mechanics of Machining—From Descriptive to Predictive Theory,” ASME PED-7, pp. 13–45.
Guo, Y. B., 2000, “Finite Element Analysis of Superfinish Hard Turning,” Ph.D. Dissertation, May, Purdue University.
Marusich, T. D., and Ortiz, M., 1994, “Simulation of High-Speed Machining,” Recent Developments in Finite Element Analysis, CIMNE, Barcelona.
Liu,  C. R., and Guo,  Y. B., 2000, “Finite Element Analysis of the Effect of Sequential Cuts and Tool-Chip Friction on Residual Stresses in a Machined Layer,” Int. J. Mech. Sci., 42/6, pp. 1069–1086.
Hibbit, Karlsson, and Sorenson, Inc., 1999, ABAQUS/Explicit User’s Manual, ver.5.8, Providence, RI.
Reddy, J. N., 1993, An Introduction to the Finite Element Method, McGraw-Hill, Inc.
Burwell,  J. T., and Strang,  C. D., 1952, J. Appl. Phys., 23, p. 18.
Shaw, M. C., 1984, Metal Cutting Principles, Oxford University Press Inc., New York.
Lin,  Z. C., and Lee,  B. Y., 1995, “An Investigation of the Residual Stress of a Machined Workpiece Considering Tool Flank Wear,” J. Mater. Process. Technol., 51, pp. 1–24.

Figures

Grahic Jump Location
3D finite element mesh (V: 1.778 m/s, Doc: 0.254 mm, f: 0.1016 mm/rev)
Grahic Jump Location
Determination of the uncut chip cross section
Grahic Jump Location
Flow chart of determination of friction coefficient
Grahic Jump Location
Temperature on cutting edge area from A to B (FEM1: V: 1.778 m/s, Doc: 0.254 mm, f: 0.1016 mm/rev; FEM2: V: 1.778 m/s, Doc: 0.762 mm, f: 0.1016 mm/rev)
Grahic Jump Location
Temperature in the middle of tool-chip interface from A to C (FEM1: V: 1.778 m/s, Doc: 0.254 mm, f: 0.1016 mm/rev; FEM2: V: 1.778 m/s, Doc: 0.762 mm, f: 0.1016 mm/rev)
Grahic Jump Location
Temperature on cutting edge area from A to B (V: 1.778 m/s, Doc: 0.1 mm, f: 0.1 mm/rev)
Grahic Jump Location
Temperature in the middle of tool-chip interface from A to C (V: 1.778 m/s, Doc: 0.1 mm, f: 0.1 mm/rev)
Grahic Jump Location
Normal residual stresses (V: 1.778 m/s, Doc: 0.254 mm, f: 0.1016 mm/rev)
Grahic Jump Location
Force sensitivity to material failure strain (V: 1.778 m/s, Doc: 0.254 mm, f: 0.1016 mm/rev)
Grahic Jump Location
Temperature sensitivity on cutting edge area to material failure strain: FC1: 0.3, FC2: 0.5, FC3: 0.7 (V: 1.778 m/s, Doc: 0.254 mm, f: 0.1016 mm/rev)
Grahic Jump Location
Tool-chip interface temperature sensitivity to material failure strain: FC1: 0.3, FC2: 0.5, FC3: 0.7 (V: 1.778 m/s, Doc: 0.254 mm, f: 0.1016 mm/rev)
Grahic Jump Location
Normal residual stress sensitivity to material failure strain: FC1: 0.3, FC2: 0.5, FC3: 0.7 (V: 1.778 m/s, Doc: 0.254 mm, f: 0.1016 mm/rev)
Grahic Jump Location
Force sensitivity to material flow stress (V: 1.778 m/s, Doc: 0.254 mm, f: 0.1016 mm/rev)
Grahic Jump Location
Temperature sensitivity on cutting edge area to material flow stress: M1: 85 percent, M2: Experimental data, M3: 115 percent (V: 1.778 m/s, Doc: 0.254 mm, f: 0.1016 mm/rev)
Grahic Jump Location
Tool-chip interface temperature sensitivity to material flow stress: M1: 85 percent, M2: experimental data, M3: 115 percent (V: 1.778 m/s, Doc: 0.254 mm, f: 0.1016 mm/rev)
Grahic Jump Location
Normal residual stress sensitivity to material flow stress: M1: 85 percent, M2: experimental data, M3: 115 percent (V: 1.778 m/s, Doc: 0.254 mm, f: 0.1016 mm/rev)
Grahic Jump Location
Temperature sensitivity to the friction coefficient (V: 1.778 m/s, Doc: 0.254 mm, f: 0.1016 mm/rev)
Grahic Jump Location
Normal residual stress sensitivity to the friction coefficient (V: 1.778 m/s, Doc: 0.254 mm, f: 0.1016 mm/rev)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In