0
RESEARCH PAPERS

Economical Aspects of Cutting Speed Selection When Turning Stepped Parts

[+] Author and Article Information
L. Kops

Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada

J. Eng. Ind 93(4), 1113-1119 (Nov 01, 1971) (7 pages) doi:10.1115/1.3428050 History: Received July 23, 1970; Online July 15, 2010

Abstract

The concept is developed of analytical comparison between two methods of cutting speed selection when cutting stepped parts: the constant rpm method and constant cutting speed method. Formulas for cost and time of machining stepped parts are derived and analyzed for two different examples of stepped parts: short ones with large differences in diameters (turbine disk) and long ones with small differences in diameters (propeller shaft). The results presented in graphical form show the advisable operating regions for the use of one of the two methods considered. The effect of time required to change the rpm on the effectiveness of the constant speed method is examined and the limit of applicability is determined. It is found that a reduction of as much as 1/3 in cost and time may be obtained when the constant speed method is applied in the case of the turbine disk. It is noted also that the minimum-cost speed and minimum-time speed depend on the choice of the method and on the shape of the machined part as well. The conclusions set out the conditions under which the use of the constant cutting speed method is justified.

Copyright © 1971 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In