0
RESEARCH PAPERS

Effects of Tension-Compression Cycling on Fatigue Crack Growth in High Strength Alloys

[+] Author and Article Information
T. W. Crooker

Metallurgy Division, Naval Research Laboratory, Washington, D. C.

J. Eng. Ind 93(4), 893-896 (Nov 01, 1971) (4 pages) doi:10.1115/1.3428081 History: Received January 18, 1971; Online July 15, 2010

Abstract

Crack growth by low-cycle fatigue is a potential failure mechanism for welded pressure vessels. Residual stresses remaining from fabrication or caused by localized plastic deformation incurred in shakedown can result in operating stress cycles approaching fully-reversed tension-compression. However, virtually all of the fatigue crack propagation data reported in the literature for structural alloys are generated under simple, zero-tension cycling, and their direct application to such problems is questionable. This paper presents the results of a study which shows that the compression portion of fully-reversed tension-compression cycling can contribute substantially to fatigue crack growth rates in plate thickness medium-to-high strength alloys. Data from several alloys show a 50 percent increase in fatigue crack growth rates due to tension-compression cycling. The implications of these findings and methods for applying the results of this study are discussed.

Copyright © 1971 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In