Sound and Vibration Transmission Through Panels and Tie Beams Using Statistical Energy Analysis

[+] Author and Article Information
M. J. Crocker

Ray W. Herrick Laboratories, School of Mechanical Engineering, Purdue University, Lafayette, Ind.

M. C. Battacharya

Department of Building Science, The University of Liverpool, Liverpool, England

A. J. Price

Barron and Strachan, Vancouver, B. C., Canada

J. Eng. Ind 93(3), 775-781 (Aug 01, 1971) (7 pages) doi:10.1115/1.3428011 History: Received August 05, 1970; Online July 15, 2010


The transmission of sound and vibration through structures is of interest in many noise control problems, including architectural acoustics, sound transmission through aircraft, spacecraft and ships, and the transmission of noise through machinery and engine enclosures. Statistical energy analysis provides a simple and accurate method of approaching these problems. In this paper, theory is examined for the transmission of acoustic energy through single panels, independent double panels, and double panels connected with tie beams. In the single panel case, the theoretical model consists of three linearly coupled oscillators; room-panel-room. The independent double panel case consists of five oscillators; room-panel-cavity-panel-room. In the connected double panel case, the tie beams must be accounted for as the sixth oscillator. A coupling loss factor is determined for the ties by considering the transmission of longitudinal waves, bending waves, and lateral shear waves in the ties. Both resonant and nonresonant transmission are included in the theory. It is shown that for a single panel, the experimental sound transmission loss, panel radiation resistance, and vibration amplitude are all well predicted by the theory. The experimental sound transmission loss is also well predicted in the independent double panel and coupled double panel cases.

Copyright © 1971 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In