0
RESEARCH PAPERS

Periodic Motions of a Two-Body System Subjected to Repetitive Impact

[+] Author and Article Information
David L. Sikarskie

Department of Aerospace Engineering, University of Michigan, Ann Arbor, Mich.

Burton Paul

Solid Mechanics Research, Ingersoll-Rand Company Research Center, Princeton, N. J.

J. Eng. Ind 91(4), 931-938 (Nov 01, 1969) (8 pages) doi:10.1115/1.3591776 History: Received December 04, 1968

Abstract

The dynamics of a widely used class of hammer impact machines are investigated on the basis of a two-degree-of-freedom idealization. The difficulty in the problem is due to the repetitive impact which introduces a nonlinearity in the system. It is the purpose of the analysis to develop a solution for the steady-state behavior of the system. There are several ways this can be done. One of the most efficient ways, from the point of view of ease of parametric studies of the system, is to convert the problem to a “boundary” value problem. With this technique, the system is governed by the equations of motion between impacts, and further satisfies additional conditions at the beginning and end of each impact cycle. Since the solution is obtained in only one cycle, it thus represents a straightforward method of studying the effect of various system parameters. A fundamental assumption in the analysis is that the steady-state response of the system has a period equal to the forcing period. This is verified for one set of parameters through the use of high-speed movies of an actual machine. There are several other interesting features in the analysis, including multivaluedness of the solution, allowable solution domain, and stability of solution, which have not been completely resolved to date.

Copyright © 1969 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In