0
RESEARCH PAPERS

Prediction of the One-Dimensional Equilibrium Cutting Gap in Electrochemical Machining

[+] Author and Article Information
J. Hopenfeld

Atomics International, Division of North American Rockwell Corp.

R. R. Cole

University of California, Los Angeles, Calif.

J. Eng. Ind 91(3), 755-763 (Aug 01, 1969) (9 pages) doi:10.1115/1.3591683 History: Received July 08, 1968

Abstract

In electrochemical machining the evolution of gas and heat in the electrolyte results in local variation of the gap between the electrodes. The ability to predict these variations for any given operating condition is a prerequisite of proper design of the cathode tool. This paper provides analytical predictions of the change in gap geometry for the one-dimensional steady-state case. Employing the basic conservation laws, a system of coupled nonlinear differential equations is derived for the gas-electrolyte mixture which flows between the electrodes. The assumption of homogeneity of the two-phase mixture is employed throughout the analysis. Numerical results from the solution of the equations are presented graphically and compared with experimental data. The local variation in gap and the relation between current, gap, and applied voltage compare favorably with the experimental data within the ranges of parameters investigated: current density 45–400 amps per sq in., electrolyte flow rate 0.22–0.98 gpm, entrance gap size 0.015–0.020 in., potassium chloride electrolyte normality 0.67–1.14.

Copyright © 1969 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In