A Theoretical Study of the Elastic Behavior of Two Normally Intersecting Cylindrical Shells

[+] Author and Article Information
J. W. Hansberry

Division of Engineering, Brown University, Providence, R. I.

N. Jones

School of Engineering, Massachusetts Institute of Technology, Cambridge, Mass.

J. Eng. Ind 91(3), 563-572 (Aug 01, 1969) (10 pages) doi:10.1115/1.3591631 History: Received July 23, 1968


A theoretical study has been made into the elastic behavior of a joint formed by the normal intersection of a right circular cylindrical shell with another of larger diameter. The wall of the larger cylinder is assumed to remain open inside the joint in order to give an arrangement which is encountered frequently in pressure vessels or pipeline intersections. An external bending moment which acts in the plane of the joint is applied to the nozzle cylinder and is equilibriated by moments of half this magnitude applied to either end of the parent cylinder. A solution for this loading has been obtained by assuming antisymmetric distributions of certain stresses across a plane transverse to the joint. The analysis presented is believed to be valid for nozzle to cylinder diameter ratios of less than 1:3. Numerical results are given for a number of cases having radius ratios of 1:10 and 1:4.

Copyright © 1969 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In