Stress Concentrations in Thin Spherical Shells

[+] Author and Article Information
Egor P. Popov, Joseph Penzien, Mandayam K. S. Rajan

Civil Engineering, University of California, Berkeley, Calif.

J. Eng. Ind 88(2), 231-236 (May 01, 1966) (6 pages) doi:10.1115/1.3670936 History: Received March 26, 1965; Online December 08, 2011


Stress distributions occurring in the proximity of rigid circular inserts attached to thin spherical shells are reported in this paper. The solutions are achieved by employing conical coordinates tangent to the sphere at its intersection with the insert. A small-deflection theory is used and results are stated in terms of readily available functions. For convenience in practical applications, solutions for several loading conditions are carried through to completion. Specifically, the paper gives formulas for stress distributions occurring in a spherical shell when provided with a rigid insert and when subjected to (a) internal pressurization in the shell; (b) axial load on the insert; (c) external moment on the insert; and (d) tangential shear load on the insert. The necessary constants of integration are given in tables and the procedure developed is illustrated by a comprehensive example.

Copyright © 1966 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In