Stability of the High-Speed Journal Bearing Under Steady Load: 1—The Incompressible Film

[+] Author and Article Information
M. M. Reddi

The Franklin Institute, Philadelphia, Pa.

P. R. Trumpler

University of Pennsylvania, Philadelphia, Pa.

J. Eng. Ind 84(3), 351-357 (Aug 01, 1962) (7 pages) doi:10.1115/1.3667507 History: Received July 25, 1961; Online December 09, 2011


The phenomenon of oil-film whirl in bearings subjected to steady external loads is analyzed. The journal, assumed to be a particle mass, is subjected to the action of two forces; namely, the external load acting on the bearing and the hydrodynamic force developed in the fluid film. The resulting equations of motion for a full-film bearing and a 180-deg partial-film bearing are developed as pairs of second-order nonlinear differential equations. In evaluating the hydrodynamic force, the contribution of the shear stress on the journal surface is found to be negligible for the full-film bearing, whereas for the partial-film bearing it is found to be significant at small attitude values. The equations of motion are linearized and the coefficients of the resulting characteristic equations are studied for the stability of the static-equilibrium positions. The full-film bearing is found to have no stable static-equilibrium position, whereas the 180-deg partial-film bearing is found to have stable static-equilibrium positions under certain parametric conditions. The equations of motion for the full-film bearing are integrated numerically on a digital computer. The results show that the journal center, depending on the parametric conditions, acquired either an orbital motion or a dynamical path of increasing attitude terminating in bearing failure.

Copyright © 1962 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In