0
RESEARCH PAPERS

Scan Welding: Thermal Modeling and Control of Material Processing

[+] Author and Article Information
G. Korizis, C. Doumanidis

Dept. of Mechanical Engineering, Tufts University, Medford, MA 02155

J. Manuf. Sci. Eng 121(3), 417-424 (Aug 01, 1999) (8 pages) doi:10.1115/1.2832697 History: Received December 01, 1997; Revised June 01, 1998; Online January 17, 2008

Abstract

This article provides a thermal analysis of scan welding, as a redesign of classical joining methods, employing computer technology to ensure the composite morphologic, material and mechanical integrity of the joint. This is obtained by real-time control of the welding temperature field by a proper dynamic heat input distribution on the weld surface. This distribution is implemented in scan welding by a single torch, sweeping the joint surface by a controlled reciprocating motion, and power adjusted by feedback of infrared temperature measurements in-process. An off-line numerical simulation of the thermal field in scan welding is established, as well as a linearized multivariable model with real-time parameter identification. An adaptive thermal control scheme is thus implemented and validated both computationally and experimentally on a robotic Gas-Tungsten Arc Welding setup. The resulting productivity and quality features of scan welding are comparatively analyzed in terms of material structure and properties of the joint.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Related

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In