0
RESEARCH PAPERS

A Comparison of Rapid Fabrication Methods for Sheet Metal Forming Dies

[+] Author and Article Information
D. F. Walczyk

Rensselaer Polytechnic Institute, Troy, New York 12180-3590

D. E. Hardt

Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, Massachusetts

J. Manuf. Sci. Eng 121(2), 214-224 (May 01, 1999) (11 pages) doi:10.1115/1.2831208 History: Received September 01, 1997; Revised April 01, 1998; Online January 17, 2008

Abstract

The need for rapid, low-cost die fabrication and modification methods is greater than ever in the sheet metal forming sector of industry. Consequently, three fabrication methods, suitable for rapid die development schemes, are being compared experimentally based on cost, lead-time, shape resolution and flexibility issues. The candidate methods include CNC-machining a solid billet of material (standard method), assembling and clamping an array of profiled-edge laminations (PEL), and configuring and clamping a matrix of closely-packed pins (discrete die). A matched-set of forming dies was made using each of the candidate fabrication methods for stamping an FEA-verified benchmark part out of steel sheet. Based on the stamping experiments, a PEL die is shown to be similar to CNC-machined dies except that most tooling accessibility problems are eliminated, die geometry limitations are reduced and faster fabrication is possible for harder tool materials. When compared with CNC-machined dies, the discrete die method limits part shape fidelity, maximum forming loads, die geometry and blankholder incorporation. However, the discrete die method excels over the other two methods in terms of lower cost and faster fabrication time. The results of this study make a strong case for the sheet metal forming sector of industry to actively implement the PEL and discrete die methods in their manufacturing operations.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In