0
RESEARCH PAPERS: Systems

About the Orthogonal Parameterization of Sculptured Part Surfaces and Initial Tool Surfaces

[+] Author and Article Information
S. P. Radzevitch, E. D. Goodman

Case Center for Computer-Aided Engineering and Manufacturing, Michigan State University, East Lansing, Michigan 48823

J. Manuf. Sci. Eng 119(4B), 823-828 (Nov 01, 1997) (6 pages) doi:10.1115/1.2836830 History: Received September 01, 1993; Revised August 01, 1996; Online January 17, 2008

Abstract

In the domain of multi-axis NC machining of sculptured surface parts, the use of orthogonal parameterizations of part and tool surfaces is convenient because it simplifies the transformation of coordinate systems. Using the so-called “differential-geometric method of sculptured surface NC machining,” developed by one of the authors, many parameterizations of part and tool surfaces are easily shown not to be orthogonal. To transform nonorthogonal part and tool surface parameterizations into orthogonal ones, the Jacobian of the transformation may be used. In cases when the Jacobian of the transformation is not known, it is possible to use differential equations for isogonal trajectories on the surfaces (choosing an orthogonal case), or a special kinematic method for obtaining sculptured surface equations. Influences of coordinate system transformations (translations and rotations along and about axes through the origin) on example part and tool surface parameterizations for four types of general helicoidal surfaces are described. The results mentioned above simplify the analytical description of the multi-axis NC machining process, and may be useful for writing NC toolpath generation software.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In