0
RESEARCH PAPERS

Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods

[+] Author and Article Information
S. Charles Liu, S. Jack Hu

Department of Mechanical Engineering and Applied Mechanics, The University of Michigan, Ann Arbor, MI 48109

J. Manuf. Sci. Eng 119(3), 368-374 (Aug 01, 1997) (7 pages) doi:10.1115/1.2831115 History: Received November 01, 1994; Revised April 01, 1996; Online January 17, 2008

Abstract

Traditional variation analysis methods, such as Root Sum Square method and Monte Carlo simulation, are not applicable to sheet metal assemblies because of possible part deformation during the assembly process. This paper proposes the use of finite element methods (FEM) in developing mechanistic variation simulation models for deformable sheet metal parts with complex two or three dimensional free form surfaces. Mechanistic variation simulation provides improved analysis by combining engineering structure models and statistical analysis in predicting the assembly variation. Direct Monte Carlo simulation in FEM is very time consuming, because hundreds or thousands of FEM runs are required to obtain a realistic assembly distribution. An alternative method, based on the Method of Influence Coefficients, is developed to improve the computational efficiency, producing improvements by several orders of magnitude. Simulations from both methods yield almost identical results. An example illustrates the developed methods used for evaluating sheet metal assembly variation. The new approaches provide an improved understanding of sheet metal assembly processes.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In