Rapid Polymer/Gas Solution Formation for Continuous Production of Microcellular Plastics

[+] Author and Article Information
C. B. Park

MIT-Industry Microcellular Plastics Consortium, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

N. P. Suh

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

J. Manuf. Sci. Eng 118(4), 639-645 (Nov 01, 1996) (7 pages) doi:10.1115/1.2831079 History: Received January 01, 1993; Revised January 01, 1995; Online January 17, 2008


An extrusion system that can create a polymer/gas solution rapidly for continuous processing of microcellular plastics is presented. Microcellular plastics are characterized by cell densities greater than 109 cells/cm3 and fully grown cells smaller than 10 μm. Previously these microcellular structures have been produced in a batch process by saturating a polymeric material with an inert gas under high pressure followed by inducing a rapid drop in the gas solubility. The diffusion phenomena encountered in this batch processing is typically slow, resulting in long cycle times. In order to produce microcellular plastics at industrial production rates, a means for the rapid solution formation is developed. The processing time required for completing the solution formation in the system was estimated from experimental data and the dispersive mixing theory based on an order-of-magnitude analysis. A means for promoting high bubble nucleation rates in the gas-saturated polymer via rapid heating is also discussed. The feasibility of the continuous production of microcellular plastics by the rapid polymer/gas solution formation and rapid heating was demonstrated through experiments. The paper includes not only a brief treatment of the basic science of the polymer/gas systems, but also the development of an industrially viable technology that fully utilizes the unique properties of microcellular plastics.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In