Pressure Die Casting: A Model of Vacuum Pumping

[+] Author and Article Information
G. Bar-Meir, E. R. G. Eckert, R. J. Goldstein

Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455

J. Manuf. Sci. Eng 118(2), 259-265 (May 01, 1996) (7 pages) doi:10.1115/1.2831019 History: Received January 01, 1993; Revised October 01, 1994; Online January 17, 2008


Multifunctional characteristics of die casting parts are significantly compromised by the presence of voids, which can result in a substantial decrease in the elastic moduli and thermal conductivity. Gas/air porosity constitutes a large part of the total porosity. To reduce the porosity due to the gas/air entrainment, a vacuum can be applied to remove the residual air in the die. In some cases vacuum castings have low porosity, while in other cases the results are not satisfactory. These differing results can be explained in some instances by an analysis of the vent area. A simple model is proposed based on conservation laws which describes the relationship between vent area and pressure variation in the die. The analysis of vacuum venting indicates that there is a critical/optimum vent area below which the ventilation is poor and above which the resistance to the air flow is minimal. The model yields a simple equation to select the optimum area which is a function of the duct resistance, the evacuated volume, and the filling time. This result should be useful to the design engineer. The result also provides a tool to “measure” the vent size for numerical simulations of the cavity filling, taking into account the compressibility of the gas.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In